Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
1.
BMC Plant Biol ; 24(1): 265, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600480

RESUMO

BACKGROUND: Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS: A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION: We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genética , Clorofila A/metabolismo , Filogenia , Cloroplastos/genética , Arabidopsis/genética , Mutação , Fenótipo , Folhas de Planta/metabolismo , Carotenoides/metabolismo , MicroRNAs/metabolismo , Precursores de Proteínas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Proteínas de Arabidopsis/genética
2.
Physiol Plant ; 176(3): e14308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666320

RESUMO

Mixotrophy, the concurrent use of inorganic and organic carbon in the presence of light for microalgal growth, holds ecological and industrial significance. However, it is poorly explored in diatoms, especially in ecologically relevant species like Skeletonema marinoi. This study strategically employed mixotrophic metabolism to optimize the growth of a strain of Skeletonema marinoi (Sm142), which was found potentially important for biomass production on the west coast of Sweden in winter conditions. The aim of this study was to discern the most effective organic carbon sources by closely monitoring microalgal growth through the assessment of optical density, chlorophyll a fluorescence, and biomass concentration. The impact of various carbon sources on the physiology of Sm142 was investigated using photosynthetic and respiratory parameters. The findings revealed that glycerol exhibited the highest potential for enhancing the biomass concentration of Sm142 in a multi-cultivator under the specified experimental conditions, thanks to the increase in respiration activity. Furthermore, the stimulatory effect of glycerol was confirmed at a larger scale using environmental photobioreactors simulating the winter conditions on the west coast of Sweden; it was found comparable to the stimulation by CO2-enriched air versus normal air. These results were the first evidence of the ability of Skeletonema marinoi to perform mixotrophic metabolism during the winter and could explain the ecological success of this diatom on the Swedish west coast. These findings also highlight the importance of both organic and inorganic carbon sources for enhancing biomass productivity in harsh winter conditions.


Assuntos
Biomassa , Diatomáceas , Fotossíntese , Estações do Ano , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Diatomáceas/metabolismo , Fotossíntese/fisiologia , Suécia , Carbono/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microalgas/fisiologia , Clorofila A/metabolismo , Clorofila/metabolismo , Glicerol/metabolismo
3.
Commun Biol ; 7(1): 289, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459083

RESUMO

Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA in Medicago truncatula identified from salt-treated Medicago truncatula is important for salinity tolerance. We name the lncRNA LAL, LncRNA ANTISENSE to M. truncatula LIGHT-HARVESTING CHLOROPHYLL A/B BINDING (MtLHCB) genes. LAL is an antisense to four consecutive MtLHCB genes on chromosome 6. In salt-treated M. truncatula, LAL is suppressed in an early stage but induced later; this pattern is opposite to that of the four MtLHCBs. The lal mutants show enhanced salinity tolerance, while overexpressing LAL disrupts this superior tolerance in the lal background, which indicates its regulatory role in salinity response. The regulatory role of LAL on MtLHCB1.4 is further verified by transient co-expression of LAL and MtLHCB1.4-GFP in tobacco leaves, in which the cleavage of MtLHCB1.4 and production of secondary interfering RNA is identified. This work demonstrates a lncRNA, LAL, functioning as a regulator that fine-tunes salinity tolerance via regulating MtLHCB1s' expression in M. truncatula.


Assuntos
Medicago truncatula , RNA Longo não Codificante , Tolerância ao Sal/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Estresse Fisiológico/genética , Clorofila A/metabolismo
4.
Ecotoxicol Environ Saf ; 274: 116200, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479316

RESUMO

Low concentration strontium (LC-Sr) can promote the growth of plants. In order to explore its promoting mechanism from the aspect of photosynthesis, the leaf characteristics, CO2 assimilation and chlorophyll (Chl) a fluorescence kinetics were investigated with hydroponically LC-Sr-treated Chinese cabbage seedlings. After a 28-d treatment to SrCl2 at different concentrations (0.1, 0.2, 0.5, and 1.0 mmol L-1), we observed an increase in the specific leaf weight (SLW) of Chinese cabbage compared with the control group. Notably, as the strontium concentration increased, a more pronounced improvement trend in the contents of Chl and protein in the leaves was observed, contributing to the enhancement of photosynthesis. However, the statistical differences in Pn among various LC-Sr treatments were not significant. Nevertheless, the leaf starch content exhibited a significant increase after LC-Sr treatments. Additionally, Chl a fluorescence transient has been used as a sensitive indicator of the promotional effect of LC-Sr on photosynthesis. The results of fluorescence parameters showed that LC-Sr treatments accelerated the light reaction speed of leaves (Tfm, dV/dto, dVG/dto), improved the energy utilization efficiency of photosystem (PSI and PSII) (ETo/CSo, ψET,ψRE, δRo, φRo), and ultimately enhanced the photosynthetic performance of leaves (PIabs, SFIabs, DFabs). The increased RCs/CSo and Sm contributed to the enhancement of the light reaction activity of strontium-treated leaves. The LC-Sr treatments had no interference with the calcium absorption, and notably enhanced the photosynthetic capacity of Chinese cabbage, shedding light on potential benefits of LC-Sr for crop cultivation.


Assuntos
Brassica , Plântula , Clorofila/metabolismo , Carbono/metabolismo , Fluorescência , Fotossíntese , Clorofila A/metabolismo , Folhas de Planta/metabolismo , Brassica/metabolismo
5.
Plant Physiol Biochem ; 208: 108461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461754

RESUMO

After their discovery, nitric oxide (NO) and indole-3-acetic acid (IAA) have been reported as game-changing cellular messengers for reducing abiotic stresses in plants. But, information regarding their shared signaling in regulating metal stress is still unclear. Herein, we have investigated about the joint role of NO and IAA in mitigation of arsenate [As(V)] toxicity in tomato seedlings. Arsenate being a toxic metalloid increases the NPQ level and cell death while decreasing the biomass accumulation, photosynthetic pigments, chlorophyll a fluorescence, endogenous NO content in tomato seedlings. However, application of IAA or SNP to the As(V) stressed seedlings improved growth together with less accumulation of arsenic and thus, preventing cell death. Interestingly, addition of c-PTIO, {2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO} and 2, 3, 5-triidobenzoic acid (TIBA, an inhibitor of polar auxin transport) further increased cell death and inhibited activity of GST, leading to As(V) toxicity. However, addition of IAA to SNP and TIBA treated seedlings reversed the effect of TIBA resulting into decreased As(V) toxicity. These findings demonstrate that IAA plays a crucial and advantageous function in NO-mediated reduction of As(V) toxicity in seedlings of tomato. Overall, this study concluded that IAA might be acting as a downstream signal for NO-mediated reduction of As(V) toxicity in tomato seedlings.


Assuntos
Óxido Nítrico , Solanum lycopersicum , Ácidos Tri-Iodobenzoicos , Óxido Nítrico/metabolismo , Arseniatos/toxicidade , Plântula/metabolismo , Clorofila A/metabolismo , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo
6.
Sci Total Environ ; 926: 171632, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38471589

RESUMO

Regulating photosynthetic machinery is a powerful but challenging strategy for selectively inhibiting bloom-forming cyanobacteria, in which photosynthesis mainly occurs in thylakoids. P-coumaric acid (p-CA) has several biological properties, including free radical scavenging and antibacterial effects, and studies have shown that it can damage bacterial cell membranes, reduce chlorophyll a in cyanobacteria, and effectively inhibit algal growth at concentrations exceeding 0.127 g/L. Allelochemicals typically inhibit cyanobacteria by inhibiting photosynthesis; however, research on inhibiting harmful algae using phenolic acids has focused mainly on their inhibitory and toxic effects and metabolite levels, and the molecular mechanism by which p-CA inhibits photosynthesis remains unclear. Thus, we examined the effect of p-CA on the photosynthesis of Limnothrix sp. in detail. We found that p-CA inhibits algal growth and damages photosynthesis-related proteins in Limnothrix sp., reduces carotenoid and allophycocyanin levels, and diminishes the actual quantum yield of Photosystem II (PSII). Moreover, p-CA significantly altered algal cell membrane protein systems, and PSII loss resulting from p-CA exposure promoted reactive oxygen species production. It significantly altered algae cell membrane protein systems. Finally, p-CA was found to be environmentally nontoxic; 80 % of 48-h-old Daphnia magna larvae survived when exposed to 0.15 g/L p-CA. These findings provide insight into the mechanism of cyanobacterial inhibition by p-CA, providing a more practical approach to controlling harmful algal blooms.


Assuntos
Ácidos Cumáricos , Cianobactérias , Proteômica , Clorofila A/metabolismo , Cianobactérias/metabolismo , Fotossíntese , Proliferação Nociva de Algas , Complexo de Proteína do Fotossistema II/metabolismo
7.
BMC Plant Biol ; 24(1): 192, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491471

RESUMO

Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.


Assuntos
Cádmio , Giberelinas , Poluentes do Solo , Cádmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Poluentes do Solo/metabolismo , Carvão Vegetal/farmacologia , Carvão Vegetal/metabolismo , Solo/química , Malondialdeído/metabolismo
8.
Environ Pollut ; 348: 123824, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513945

RESUMO

ß-cyclocitral (BCC) is an odorous compound that can be produced by bloom-forming cyanobacteria, for example, Microcystis aeruginosa. BCC has been proposed to explain the rapid decline of cyanobacterial blooms in natural water bodies due to its lytic effects on cyanobacteria cells. However, few insights have been gained regarding the mechanisms of its lethality on cyanobacteria. In this study, M. aeruginosa was exposed to 0-300 mg/L BCC, and the physiological responses were comprehensively studied at the cellular, molecular, and transcriptomic levels. The result indicated that the lethal effect was concentration-dependent; 100 mg/L BCC only caused recoverable stress, while 150-300 mg/L BCC caused rapid rupture of cyanobacterial cells. Scanning electron microscope images suggested two typical morphological changes exposed to above 150 mg/LBCC: wrinkled/shrank with limited holes on the surface at 150 and 200 mg/L BCC exposure; no apparent shrinkage at the surface but with cell perforation at 250 and 300 mg/L BCC exposure. BCC can rapidly inhibit the photosynthetic activity of M. aeruginosa cells (40%∼100% decreases for 100-300 mg/L BCC) and significantly down-regulate photosynthetic system Ⅰ-related genes. Also, chlorophyll a (by 30%∼90%) and ATP (by ∼80%) contents severely decreased, suggesting overwhelming pressure on the energy metabolism in cells. Glutathione levels increased significantly, and stress response-related genes were upregulated, indicating the perturbation of intracellular redox homeostasis. Two cell death pathways were proposed to explain the lethal effect: apoptosis-like death as revealed by the upregulation of SOS response genes when exposed to 200 mg/L BCC and mazEF-mediated death as revealed by the upregulation of mazEF system genes when exposed to 300 mg/L BCC. Results of the current work not only provide insights into the potential role of BCC in inducing programmed cell death during bloom demise but also indicate the potential of using BCC for harmful algal control.


Assuntos
Aldeídos , Cianobactérias , Diterpenos , Microcystis , Clorofila A/metabolismo , Cianobactérias/metabolismo , Apoptose
9.
J Photochem Photobiol B ; 252: 112872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401433

RESUMO

To study the influence and regulation of light quality on the microalgal photosynthetic activity and production of biomass and substances, green alga Dunaliella bardawil was cultured in this study under the monochromatic red light (7R0B), blue light (0R7B), and their combinations with different ratios (xRyB, x + y = 7), as well as a control of white light (W). The results demonstrated that the only advantage for control W was its chlorophyll-a (Chl-a) and Chl-b contents. All substance production at 7R0B were much lower than at control W, except of glycerol. Compared to control W, protein production at 1R6B (259.22 mg/L) was 1.10 times greater, carbohydrate production at 0R7B (306.49 mg/L) was 1.34 times higher, lipid production at 3R4B (133.60 mg/L) was 1.36 times higher, and glycerol production at 4R3B (53.58 mg/L) was 1.13 times greater. In comparison to control W, there was the significant improvements of at least 19%, 20%, and 5%, respectively, in the values of potential maximal relative electron transport efficiency (rETRmax), light intensity with saturated rETR (IK), and actual photochemical efficiency of PSII (QYss) in treatments. The correlation analysis revealed that the content of carotenoids was closely related to non-photochemical quenching (NPQ). The test using Chl-a fluorescence transients (JIP-test) proved that red light inhibited electron transport from reduced Quinone A (QA-) to QB and resulted in a sharp increase in RC/CSm, and that the blue-dominated light enhanced electron transport from QA- to QB and from plastoquinone (PQ) to PSI receptor side. The photosynthetic parameters including Ψo, φEO, φRO, δRO, PIABS, PItotal, DFABS, and DFtotal, which were positively correlated with growth and substance production, were improved by blue-dominated light. The variations in the electron transport chain might provide the signals for metabolic regulation. The results of this study will be helpful to promote the production of Dunaliella bardawil under artificial illumination and to clarify the regulating mechanism of light quality on microalgal photosynthesis.


Assuntos
Glicerol , Fotossíntese , Glicerol/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Clorofila A/metabolismo , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
10.
J Phys Chem Lett ; 15(9): 2499-2510, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38410961

RESUMO

Diatoms are one of the most abundant photosynthetic organisms on earth and contribute largely to atmospheric oxygen production. They contain fucoxanthin and chlorophyll-a/c binding proteins (FCPs) as light-harvesting complexes with a remarkable adaptation to the fluctuating light on ocean surfaces. To understand the basis of the photosynthetic process in diatoms, the excitation energy funneling within FCPs must be probed. A state-of-the-art multiscale analysis within a quantum mechanics/molecular mechanics framework has been employed. To this end, the chlorophyll (Chl) excitation energies within the FCP complex from the diatom Phaeodactylum tricornutum have been determined. The Chl-c excitation energies were found to be 5-fold more susceptible to electric fields than those of Chl-a pigments and thus are significantly lower in FCP than in organic solvents. This finding challenges the general belief that the excitation energy of Chl-c is always higher than that of Chl-a in FCP proteins and reveals that Chl-c molecules are much more sensitive to electric fields within protein scaffolds than in Chl-a pigments. The analysis of the linear absorption spectrum and the two-dimensional electronic spectra of the FCP complex strongly supports these findings and allows us to study the excitation transfer within the FCP complex.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Clorofila/química , Clorofila A/metabolismo , Fotossíntese , Proteínas de Ligação à Clorofila/química , Complexos de Proteínas Captadores de Luz/química
11.
Environ Pollut ; 345: 123537, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355084

RESUMO

Arsenic (As) pollution in agricultural systems poses a serious threat to crop productivity and food safety. Silicon (Si) has been reported to mitigate toxic effects of heavy metals in plants. However, the mechanisms behind Si-mediated alleviation of As toxicity in rice (Oryza sativa L.) remain poorly understood. Here, we performed metagenomic and biochemical analyses to investigate the potential of Si in alleviating As toxicity to rice plants. As exposure reduced plant growth, chlorophyll contents, antioxidant enzyme levels and soil enzymes activity, while increasing reactive oxygen species (ROS) activity and inducing alterations in the rhizosphere microbiome of rice seedlings. Silicon amendments enhanced rice growth (24%), chlorophyll a (25%), and chlorophyll b (26.7%), indicating enhanced photosynthetic capacity. Si amendments also led to the upregulation of antioxidant enzymes viz., superoxide dismutase (15.4%), and peroxidase (15.6%), resulting in reduced ROS activity and oxidative stress compared to the As-treated control. Furthermore, Si treatment reduced uptake and translocation of As in rice plants, as evidenced by the analysis of elemental contents. Microscopic examination of leaf and root ultrastructure showed that Si mitigated As-induced cellular damage and maintained normal morphology. Metagenomic analysis of the rice rhizosphere microbiome revealed that Si application modulated composition and diversity of microbial communities e.g., Proteobacteria, Actinobacteria, and Firmicutes. Additionally, Si amendments upregulated the relative expression levels of OsGSH, OsPCs, OsNIP1;1 and OsNIP3;3 genes, while the expression levels of the OsLis1 and OsLis2 genes were significantly downregulated compared with As-treated rice plants. Overall, these findings contribute to our understanding of Si-mediated plant resilience to As stress and offer potential strategies for sustainable agriculture in As-contaminated regions.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Antioxidantes/metabolismo , Arsênio/análise , Oryza/metabolismo , Silício/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofila A/metabolismo , Plântula , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
12.
Environ Sci Pollut Res Int ; 31(13): 19206-19225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355858

RESUMO

Toxicological effects of silver nanoparticles (SNPs) in different organisms have been studied; however, interactions of SNPs with other environmental pollutants such as mercury are poorly understood. Herein, bioassay tests were performed according to ΟECD 201 guideline to assess the toxic effects induced by mercury ions (mercury chloride, MCl) on the marine microalga Chaetoceros muelleri in the presence of SNPs or silver ions (silver nitrate, SN). Acute toxicity tests displayed that the presence of SNPs or SN (0.01 mg L-1) significantly reduced the toxicity of MCl (0.001, 0.01, 0.1, 1, 10, and 100 mg L-1) and increased the IC50 of MCl from 0.072 ± 0.014 to 0.381 ± 0.029 and 0.676 ± 0.034 mg L-1, respectively. In the presence of SN or SNPs, the mercury-reducing effect on algal population growth significantly decreased. Considering the increase of IC50, the mercury toxicity decreased approximately 5.44 and 9.66 times in the presence of SNPs or SN, respectively. The chlorophyll a and c contents decreased at all exposures; however, the decrease by MCl-SNPs and MCl-SN was significantly less than MCl except at 1 mg L-1. The lowering effect of MCl-SN on chlorophyll contents was less than MCl and MCl-SNPs. MCl exposure induced significant raises in total protein content (TPC) at concentrations < 0.01mg  L-1, with a maximum of ~ 70.83% attained at 100 mg L-1. The effects of MCl-SNPs and MCl-SN on TPC were significantly less than MCl. Total lipid content (TLC) at all MCl concentrations was higher than the control, while at coexposure to MCl-SN, TLC did not change until 0.01 mg L-1 compared with the control. The effects of MCl-SN and MCL-SNPs on TPC and TLC were in line with toxicity results, and were significantly less than those of MCl individually, confirming their antagonistic effects on MCl. The morphological changes of algal cells and mercury content of the cell wall at MCl-SN and MCl-SNPs were mitigated compared with MCl exposure. These findings highlight the mitigatory impacts of silver species on mercury toxicity, emphasizing the need for better realizing the mixture toxicity effects of pollutants in the water ecosystem.


Assuntos
Poluentes Ambientais , Mercúrio , Nanopartículas Metálicas , Microalgas , Poluentes Químicos da Água , Mercúrio/toxicidade , Clorofila A/metabolismo , Microalgas/metabolismo , Nanopartículas Metálicas/toxicidade , Ecossistema , Prata/toxicidade , Poluentes Ambientais/toxicidade , Íons , Poluentes Químicos da Água/toxicidade
13.
Chemosphere ; 352: 141422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341000

RESUMO

Cyanobacterial blooms can impair drinking water quality due to the concomitant extracellular organic matter (EOM). As copper is often applied as an algicide, cyanobacteria may experience copper stress. However, it remains uncertain whether algal growth compensation occurs and how EOM characteristics change in response to copper stress. This study investigated the changes in growth conditions, photosynthetic capacity, and EOM characteristics of M. aeruginosa under copper stress. In all copper treatments, M. aeruginosa experienced a growth inhibition stage followed by a growth compensation stage. Notably, although chlorophyll-a fluorescence parameters dropped to zero immediately following high-intensity copper stress (0.2 and 0.5 mg/L), they later recovered to levels exceeding those of the control, indicating that photosystem II was not destroyed by copper stress. Copper stress influenced the dissolved organic carbon (DOC) content, polysaccharides, proteins, excitation-emission matrix spectra, hydrophobicity, and molecular weight (MW) distribution of EOM, with the effects varying based on stress intensity and growth stage. Principal component analysis revealed a correlation between the chlorophyll-a fluorescence parameters and EOM characteristics. These results imply that copper may not be an ideal algicide. Further research is needed to explore the dynamic response of EOM characteristics to environmental stress.


Assuntos
Cianobactérias , Herbicidas , Microcystis , Microcystis/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Plantas , Clorofila A/metabolismo , Herbicidas/metabolismo
14.
Sci Rep ; 14(1): 2921, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316894

RESUMO

The application of natural extracts to vegetable plants can increase production, optimize nutrient and water uptake, and mitigate the effects of stress on vegetable plants by enhancing primary and secondary metabolism. In this study, Acacia saligna (Labill.) H.L.Wendl. fruit aqueous extract (FAE) was applied as a foliar application to assess and demonstrate its effects on growth, productivity, and phytochemicals of coriander (Coriandrum sativum L.) plants. A. saligna FAE (2%, 4%, and 6%), each combined with 50% of the recommended dose of N fertilizer was applied to coriander plants over the course of two successive seasons in the field. These treatments were compared with the control treatment, which used a 100% recommended dose of N. The four tested treatments were set up in a randomized complete block design with three replicates for a total of 12 experimental plots. Each replicate (experimental plot) was 3 m2 (2 × 1.5 m2) in size and included 300 seeds/m2. The phytochemicals were examined using chromatographic and spectrophotometric methods, where the essential oils (EOs) extracted from leaves were analyzed by Gas chromatography-mass spectrometry (GC-MS), while the phenolic and flavonoid compounds were analyzed by High Performance Liquid Chromatography (HPLC). With the application of A. saligna FAE (4%) + 50% N fertilizer, the levels of total solid content, total carbohydrates, total protein, total phenols, and total antioxidant activity, as well as chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoids, were increased at harvest. The treatment A. saligna FAE at 6% + 50% N fertilizer did not observe significant improvement in the growth parameters of coriander plants because of the anticipated allelopathic effects. By GC-MS analysis, the major compounds in the EO from control treatment were 2-octyn-1-ol (23.93%), and 2-butyl-1-octanol (8.80%), in treated plants with 2% of A. saligna FAE + 50% N fertilizer were (E)-2-decen-1-ol (32.00%), and 1-methoxymethoxy-oct-2-yne (13.71%), in treated plants with 4% A. saligna FAE + 50% N fertilizer were E-2-undecen-1-ol (32.70%), and 3,5,5-trimethyl-1-hexene (8.91%), and in the treated plants with A. saligna FAE (6%) + 50% N fertilizer were phytol (80.44%), and (Z)6,(Z)9-pentadecadien-1-ol (13.75%). The flavonoid components 7-hydroxyflavone, naringin, rutin, quercetin, kaempferol, luteolin, apigenin, and catechin were presented with variable concentrations according to the treatments utilized as identified by HPLC analysis from the methanol extracts of the treated plants with the combination treatments of A. saligna FAE (2, 4, and 6%) and N fertilization (50% from the recommended dose) and control coriander plants (100% N recommended dose). The combination of 50% N fertilizer treatment and the biostimulant A. saligna FAE (4%) seems to improve coriander plant growth while simultaneously lowering N fertilizer consumption. Future research will be needed to further study the effectiveness of several concentrations of A. saligna FAE in various conditions and/or species.


Assuntos
Acacia , Coriandrum , Coriandrum/química , Clorofila A/metabolismo , Fertilizantes , Frutas/química , Compostos Fitoquímicos/análise , Antioxidantes/metabolismo , Flavonoides/metabolismo , Plantas
15.
BMC Plant Biol ; 24(1): 97, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331770

RESUMO

BACKGROUND: Drought is thought to be a major abiotic stress that dramatically limits tomato growth and production. As signal molecule, melatonin (MT) and carbon monoxide (CO) can enhance plant stress resistance. However, the effect and underlying mechanism of CO involving MT-mediated drought resistance in seedling growth remains unknown. In this study, tomato (Solanum lycopersicum L. 'Micro-Tom') seedlings were used to investigate the interaction and mechanism of MT and CO in response to drought stress. RESULTS: The growth of tomato seedlings was inhibited significantly under drought stress. Exogenous MT or CO mitigated the drought-induced impairment in a dose-dependent manner, with the greatest efficiency provided by 100 and 500 µM, respectively. But application of hemoglobin (Hb, a CO scavenger) restrained the positive effects of MT on the growth of tomato seedlings under drought stress. MT and CO treatment promoted chlorophyll a (Chl a) and chlorophyll a (Chl b) accumulations. Under drought stress, the intermediate products of chlorophyll biosynthesis such as protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX), potochlorophyllide (Pchlide) and heme were increased by MT or CO, but uroporphyrinogen III (Uro III) content decreased in MT-treated or CO-treated tomato seedlings. Meanwhile, MT or CO up-regulated the expression of chlorophyll and heme synthetic-related genes SlUROD, SlPPOX, SlMGMT, SlFECH, SlPOR, SlChlS, and SlCAO. However, the effects of MT on chlorophyll biosynthesis were almost reversed by Hb. CONCLUSION: The results suggested that MT and CO can alleviate drought stress and facilitate the synthesis of Chl and heme in tomato seedlings. CO played an essential role in MT-enhanced drought resistance via facilitating chlorophyll biosynthesis pathway.


Assuntos
Melatonina , Solanum lycopersicum , Clorofila/metabolismo , Melatonina/metabolismo , Plântula/metabolismo , Solanum lycopersicum/genética , Clorofila A/metabolismo , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Resistência à Seca , Heme/metabolismo , Heme/farmacologia
16.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338942

RESUMO

Zoysia japonica (Zoysia japonica Steud.) is a kind of warm-season turfgrass with many excellent characteristics. However, the shorter green period and longer dormancy caused by cold stress in late autumn and winter are the most limiting factors affecting its application. A previous transcriptome analysis revealed that ethephon regulated genes in chlorophyll metabolism in Zoysia japonica under cold stress. Further experimental data are necessary to understand the effect and underlying mechanism of ethephon in regulating the cold tolerance of Zoysia japonica. The aim of this study was to evaluate the effects of ethephon by measuring the enzyme activity, intermediates content, and gene expression related to ethylene biosynthesis, signaling, and chlorophyll metabolism. In addition, the ethylene production rate, chlorophyll content, and chlorophyll a/b ratio were analyzed. The results showed that ethephon application in a proper concentration inhibited endogenous ethylene biosynthesis, but eventually promoted the ethylene production rate due to its ethylene-releasing nature. Ethephon could promote chlorophyll content and improve plant growth in Zoysia japonica under cold-stressed conditions. In conclusion, ethephon plays a positive role in releasing ethylene and maintaining the chlorophyll content in Zoysia japonica both under non-stressed and cold-stressed conditions.


Assuntos
Etilenos , Compostos Organofosforados , Poaceae , Clorofila A/metabolismo , Poaceae/genética , Etilenos/metabolismo , Clorofila/metabolismo
17.
Chemosphere ; 353: 141387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331268

RESUMO

In industrial-scale cultivation of microalgae, salinity stress often stimulates high-value metabolites production but decreases biomass yield. In this research, we present an extraordinary response of Arthrospira platensis to salinity stress. Specifically, we observed a significant increase in both biomass production (2.58 g L-1) and phycocyanin (PC) content (22.31%), which were enhanced by 1.26-fold and 2.62-fold, respectively, compared to the control, upon exposure to exogenous glycine betaine (GB). The biochemical analysis reveals a significant enhancement in carbonic anhydrase activity and chlorophyll a level, concurrent with reductions in carbohydrate content and reactive oxygen species (ROS) levels. Further, transcriptomic profiling indicates a downregulation of genes associated with the tricarboxylic acid (TCA) cycle and an upregulation of genes linked to nitrogen assimilation, hinting at a rebalanced carbon/nitrogen metabolism favoring PC accumulation. This work thus presents a promising strategy for simultaneous enhancement of biomass production and PC content in A. platensis and expands our understanding of PC biosynthesis and salinity stress responses in A. platensis.


Assuntos
Ficocianina , Spirulina , Betaína/farmacologia , Clorofila A/metabolismo , Biomassa , Nitrogênio/metabolismo , Spirulina/metabolismo , Estresse Salino , Suplementos Nutricionais
18.
Plant Physiol Biochem ; 207: 108420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324953

RESUMO

Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.


Assuntos
Oryza , Tolerância ao Sal , Transporte de Elétrons , Tolerância ao Sal/genética , Clorofila A/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Oryza/genética , Oryza/metabolismo
19.
Ecotoxicology ; 33(2): 151-163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329639

RESUMO

Suspended particulate matter (SPM), an important component of the natural water environment, can act as a carrier of many pollutants that affect aquatic organisms. In the present study, the effect of SPM obtained from Jinjiang Estuary on the physiological, biochemical, and photosynthetic properties of typical freshwater algae (Chlorella pyrenoidosa) was investigated. The results showed that under different concentrations of SPM treatment, the superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content of C. pyrenoidosa increased, but the soluble protein content decreased. SPM with different particle sizes had less effect on SOD of C. pyrenoidosa, but showed a promoting effect on CAT and MDA as well as soluble protein content. In terms of photosynthetic activity, high concentrations (70, 90 mg/L) and small particle sizes (0-75, 75-120 µm) of SPM had a greater effect on the chlorophyll a content of C. pyrenoidosa. In addition, different concentrations of SPM had no significant effect on the potential photosynthetic activity of PS II (Fv/F0) and the maximum quantum yield of PS II (Fv/Fm), but the inhibition of the initial slope (alpha), the maximum photosynthetic rate (ETRmax) and the semi-light saturation point (Ik) increased with the increase of SPM concentration. Fv/F0, ETRmax, and Ik of C. pyrenoidosa showed some degree of recovery after inhibition in the presence of SPM of different particle sizes.


Assuntos
Chlorella , Poluentes Químicos da Água , Clorofila A/metabolismo , Clorofila A/farmacologia , Material Particulado/toxicidade , Material Particulado/metabolismo , Estuários , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise
20.
BMC Plant Biol ; 24(1): 138, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408911

RESUMO

Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.


Assuntos
Trigonella , Zinco , Boro/metabolismo , Boro/farmacologia , Clorofila A/metabolismo , Estresse Salino , Tensoativos/metabolismo , Tensoativos/farmacologia , Trigonella/metabolismo , Zinco/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...